Insulin deficiency downregulated heat shock protein 60 and IGF-1 receptor signaling in diabetic myocardium.

نویسندگان

  • Harn-Shen Chen
  • Yue-Xin Shan
  • Tung-Lin Yang
  • Hong-Da Lin
  • Jaw-Wen Chen
  • Shing-Jong Lin
  • Ping H Wang
چکیده

Heat shock protein (Hsp)60 and IGF-1 receptor signaling protect cardiac muscle against injury. The abundance of cardiac IGF-1 receptor can be upregulated by Hsp60, but how diabetes modulates cardiac muscle Hsp60 has not yet been defined. We investigated the changes of Hsp60 and IGF-1 receptor signaling in the diabetic myocardium and studied how diabetes modulates Hsp60 and IGF-1 receptor in diabetic myocardium. In the streptozotocin (STZ)-induced diabetic rat, downregulation of Hsp60 and IGF-1 receptor occurred 4 days after induction of diabetes. IGF-1 activation of IGF-1 receptor, Mek, and Akt were reduced accordingly in the diabetic myocardium. The independent effect of insulin and hyperglycemia on Hsp60 was investigated in primary cardiomyocytes. Incubating cardiomyocytes with insulin was associated with dose-dependent increase of Hsp60 protein. In contrast, the abundance of Hsp60 was not affected by high concentration of glucose in these cells. To further determine the independent effects of hyperglycemia and insulin deficiency on the changes of myocardial Hsp60 and IGF-1 receptor, we used phlorizin to normalize blood glucose in diabetic rats. In the phlorizin-treated diabetic rats, myocardial Hsp60 was lower than that of the normal controls. In contrast, insulin treatment normalized myocardial Hsp60 in the diabetic rats. Because phlorizin does not alter insulin secretion, Hsp60 expression was modulated by insulin and not by hyperglycemia. Similar changes of Hsp60 and IGF-1 receptor were observed in the skeletal muscle of STZ-induced diabetic rats. These findings suggest that insulin deficiency is a novel mechanism that leads to downregulation of Hsp60 in diabetic muscle tissues. The development of diabetic cardiomyopathy might have involved downregulation of Hsp60 and subsequent reduction of IGF-1 receptor signaling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of IGF-I receptor signaling in diabetic cardiac muscle: dysregulation of cytosolic and mitochondria HSP60.

Insulin deficiency downregulates HSP60 and IGF-I receptor signaling and disrupts intracellular signaling homeostasis in diabetic cardiac muscle. Our previous studies had shown that IGF-I receptor signaling can be modulated by the abundance of HSP60. Since HSP60 localizes to the cytoplasmic compartment and mitochondria, this study was carried out to determine the distribution of cytosolic and mi...

متن کامل

Investigation on the Levels of IGF-I Receptor and IGF-I Binding Protein I in the Brain of Insulin Resistant Rats

Abstract Introduction: There is limited knowledge available on the metabolism of glucose in the brain, an insulin insensitive organ. Insulin receptors hybridize with insulin like growth factor receptor (IGF-I) to transduce the signals in different areas of the brain. In this article we aimed at investigating whether the expression of IGF-I receptor and IGF-I binding proteins (IGFBP1) is change...

متن کامل

Heat shock response and insulin-associated neurodegeneration.

Dysfunctional insulin and insulin-like growth factor-I (IGF-I) signaling contributes to the pathological progression of diabetes, diabetic peripheral neuropathy (DPN), Alzheimer's (AD), Parkinson's (PD) and Huntington's diseases (HD). Despite their prevalence, there are limited therapeutic options available for the treatment of these neurodegenerative disorders. Therefore, establishing a link b...

متن کامل

The pathological role of advanced glycation end products-downregulated heat shock protein 60 in islet β-cell hypertrophy and dysfunction

Heat shock protein 60 (HSP60) is a mitochondrial chaperone. Advanced glycation end products (AGEs) have been shown to interfere with the β-cell function. We hypothesized that AGEs induced β-cell hypertrophy and dysfunction through a HSP60 dysregulation pathway during the stage of islet/β-cell hypertrophy of type-2-diabetes. We investigated the role of HSP60 in AGEs-induced β-cell hypertrophy an...

متن کامل

Hyperglycemia and antibody titres against heat shock protein 27 in traumatic brain injury patients on parenteral nutrition

Objective(s):Hyperglycemia worsens the neuronal death induced by cerebral ischemia. Previous studies demonstrated that diabetic hyperglycemia suppressed the expression of heat shock protein 70 and 60 (HSP70 and 60) in the liver. IgG antibody titres against heat shock protein 27 (anti HSP27) were measured to determine whether hyperglycemia exacerbates ischemic brain damage by suppressing the exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Diabetes

دوره 54 1  شماره 

صفحات  -

تاریخ انتشار 2005